Surface- and Tip-Enhanced Raman Spectroscopy as Operando Probes for Monitoring and Understanding Heterogeneous Catalysis
نویسندگان
چکیده
ABSTRACT Surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) were until recently limited in their applicability to the majority of heterogeneous catalytic reactions. Recent developments begin to resolve the conflicting experimental requirements for SERS and TERS on the one hand, and heterogeneous catalysis on the other hand. This article discusses the development and use of SERS and TERS to study heterogeneous catalytic reactions, and the exciting possibilities that may now be within reach thanks to the latest technical developments. This will be illustrated with showcase examples from photo- and electrocatalysis. GRAPHICAL ABSTRACT
منابع مشابه
In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy
Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we d...
متن کاملSurface- and Tip-Enhanced Raman Spectroscopy in Catalysis
Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quantities at hot spots where electromagnetic fields are the strongest, providing ample opportunities...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملCatalyst Structure-Performance Relationship Identified by High-Throughput Operando Method: New Insight for Silica-Supported Vanadium Oxide for Methanol Oxidation
The reaction mechanism of methanol oxidation catalyzed by vanadium oxides on a silica support (V2O5/ SiO2) was investigated in a high-throughput operando reactor coupled with a Fourier transform-infrared (FT-IR) imaging system for rapid product analysis and six parallel, in situ Raman spectroscopy probes for catalyst characterization. Up to six V2O5/SiO2 catalysts with different vanadium loadin...
متن کاملLabel-free monitoring of plasmonic catalysis on the nanoscale.
Plasmonics is the description of specific light matter interactions of metallic structures. In general the size of such structures is well in the nanometer regime and also determines such specific characteristics as color, field confinement etc. Plasmon-induced hot electrons play a vital role in so-called plasmonic catalysis, a field that has recently attracted attention as a new reaction platf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 145 شماره
صفحات -
تاریخ انتشار 2015